安全管理網

最小割集與最小徑集在事故樹分析中的作用

作者:安全管理網  來源:安全管理網 
評論: 更新日期:2012年04月21日

?????事故樹分析是利用事故樹對事故進行預測的方法,是安全系統工程中最重要的分析方法之一,它是按照演繹的原理對事故進行定性和定量的分析。定性分析包括最小割(徑)集的求取和重要度分析。最小割集是頂上事件發生的最低限度基本事件的集合(用于事故分析,對應有事故樹);最小徑集是頂上事件發生所必須的最低限度的基本事件的集合(用于安全分析,對應有成功樹)。定量分析主要求取頂上事件(即環境危害事故)的發生概率。在事故樹分析中,最小割(徑)集占有非常重要的地位,熟練掌握并靈活運用最小割集和最小徑集,能使系統事故分析達到了事半功倍的效果。

?????為了更好說明最小割集與最小徑集在事故樹分析中的作用,本文以造紙廠備料工段木料切片打擊傷害事故和空壓機儲氣罐爆炸事故為例子。木料切片打擊傷害事故樹圖和空壓機儲氣罐爆炸事故樹圖見圖1和圖2。

圖1為造紙廠備料工段木料切片打擊傷害事故樹圖圖中:T1為頂上事件

a為條件與門

B為中間事件

X1、X2、X3、X4、X5、X6、X7為基本事件由上面的事故樹寫出其結構式,并進行布爾代數運算:

T1=a.A.B

a(Xl+X2+X3)(X4+X5+X6+X7)

aXlX4+aXlX 5+aXlX6+aXlX7+aX2X4

+aX2X5+aX2X6+aX2X7+aX3X4+aX3X5+aX3X6

+aX3X7

則該事故樹的最小割集:

K1=(a,Xl,X4),K2=(a,Xi,X5),K3=(a,Xl,X6),K4=(a,XI,X7),K5=(a,X2,X4),K6=(a,X2,X5),K7=(a,x2,g6),K8=(a,X2,X7),K9=(a,X3,X4), K10=(a,X3,X5),K11=(a,X3,X6),K12=(a,X3,X7)

事故樹的最小徑集:

P1=(a),P2=(X1,X2,X3),P3=(X4,X5,X6,X7)

圖2為空壓機儲氣罐爆炸事故樹圖圖中:T1為頂上事件

a為條件與門

A、B為中間事件

XI、X2、X3、X4、X5為基本事件由上面的事故樹寫出其結構式,并進行布爾代數運算:

T2=A+B+X3

=XiX2+aX4X5+X3則該事故樹的最小割集:

K1=(X3),K2=(X1,X2),K3:(a,X4,X5)

現結合上述兩個例子,歸納最小割集和最小徑集在事故樹分析中的作用。

網友評論 more
創想安科網站簡介會員服務廣告服務業務合作提交需求會員中心在線投稿版權聲明友情鏈接聯系我們
5544444